हिंदी

If A is a square matrix of order 3, then |2A| is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a square matrix of order 3, then |2A| is equal to ______.

विकल्प

  • 2|A|

  • 4|A|

  • 8|A|

  • 6|A|

MCQ
रिक्त स्थान भरें

उत्तर

If A is a square matrix of order 3, then |2A| is equal to 8|A|.

Explanation:

Order of square matrix A.

n = 3

∵ |kA| = kn|A|,

k = constant

`\implies` |2A| = 23|A|

= 8|A|

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If for any 2 x 2 square matrix A, `A("adj"  "A") = [(8,0), (0,8)]`, then write the value of |A|


Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


if `A = [(0, -tan  alpha/2), (tan  alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`


Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


Given two matrices A and B 

`A = [(1,-2,3),(1,4,1),(1,-3, 2)]  and B  = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`

find AB and use this result to solve the following system of equations:

x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1


If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


For the non singular matrix A, (A′)–1 = (A–1)′.


Show by an example that for A ≠ O, B ≠ O, AB = O


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


For any square matrix A, AAT is a ____________.


The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]`  is a ____________.


If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.


A matrix is said to be a column matrix if it has


A diagonal matrix is said to be a scalar matrix if its diagonal elements are


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.


How many matrices can be obtained by using one or more numbers from four given numbers?


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×