हिंदी

Find the value of x, y, and z from the following equation: [x+y25+zxy]=[6258] - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`

योग

उत्तर

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`

As the given matrices are equal, their corresponding elements are also equal.

Comparing the corresponding elements, we get:

Now, 5 + z = 5 ⇒ z = 0

Also, x + y = 6

y = 6 - x          .....(i)

and xy = 8           .....(ii)

Solving (i) & (ii), we have x (6 - x) = 8

= 6x - x2 = 8

x2 - 6x + 8 = 0

= (x - 4) (x - 2) = 0

= x = 2, 4

When x = 2, we get y = 4 and when x = 4, we get y = 6 - 4 = 2

Hence, x = 2, y = 4, z = 0 or x = 4, y = 2, z = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise 3.1 [पृष्ठ ६४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise 3.1 | Q 6.2 | पृष्ठ ६४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 If A is a square matrix such that A2 = I, then find the simplified value of (A – I)3 + (A + I)3 – 7A.


If for any 2 x 2 square matrix A, `A("adj"  "A") = [(8,0), (0,8)]`, then write the value of |A|


Find the value of x, y, and z from the following equation:

`[(4,3),(x,5)] = [(y,z),(1,5)]`


Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'


Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.


Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`

 


If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`


Find k if the following matrix is singular:

`[(7, 3),(-2, "k")]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`


Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.


If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, Show that A2 – 4A is a scalar matrix 


Answer the following question:

If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix


Choose the correct alternative:

If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______


Choose the correct alternative:

If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______


State whether the following statement is True or False:

If A is non singular, then |A| = 0


State whether the following statement is True or False:

If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1


State whether the following statement is True or False:

If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2 


If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2


For the non singular matrix A, (A′)–1 = (A–1)′.


If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2 


If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.


If A is a square matrix, then A – A’ is a ____________.


The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.


A matrix is said to be a column matrix if it has


A = `[a_(ij)]_(m xx n)` is a square matrix, if


If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to


A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.


Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:

(P) If A1I2, then |A| = –1

(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.


If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.


Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.


Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×