Advertisements
Advertisements
प्रश्न
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
उत्तर
Given A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]`
To prove unitary, we have to prove AAθ = I
∴ `A^theta = 1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]`
∴ LHS = AAθ
= `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]`
`=1/4[(2+2+0,-2i+2i+0,0+0+0),(2i-2i+0,2+2+0,0+0+0),(0+0+0,0+0+0,0+0+4)]`
`=1/4[(4,0,0),(0,4,0),(0,0,4)]`
`=[(1,0,0),(0,1,0),(0,0,1)]`
LHS= I
= RHS
LHS =RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If A is a square matrix, such that A2=A, then write the value of 7A−(I+A)3, where I is an identity matrix.
If for any 2 x 2 square matrix A, `A("adj" "A") = [(8,0), (0,8)]`, then write the value of |A|
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
Let A = `[(0,1),(0,0)]`show that (aI+bA)n = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N
if A = [(1,1,1),(1,1,1),(1,1,1)], Prove that A" = `[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]` `n in N`
if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Determine the product `[(-4,4,4),(-7,1,3),(5,-3,-1)][(1,-1,1),(1,-2,-2),(2,1,3)]` and use it to solve the system of equations x - y + z = 4, x- 2y- 2z = 9, 2x + y + 3z = 1.
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`
Given two matrices A and B
`A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`
find AB and use this result to solve the following system of equations:
x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1
In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.
If A and B are square matrices of order 3 such that |A| = –1, |B| = 3, then find the value of |2AB|.
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(5, 1, -1),(3, 2, 0)]`, Find (AT)T.
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
Select the correct option from the given alternatives:
Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______
Select the correct option from the given alternatives:
If A and B are square matrices of equal order, then which one is correct among the following?
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find B + C – A
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C
Answer the following question:
If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.
Answer the following question:
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices
If A = `[(6, 0),("p", "q")]` is a scalar matrix, then the values of p and q are ______ respectively.
Choose the correct alternative:
If B = `[(6, 3),(-2, "k")]` is singular matrix, then the value of k is ______
Choose the correct alternative:
If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______
State whether the following statement is True or False:
If A is non singular, then |A| = 0
State whether the following statement is True or False:
If `[(3, 0),(0, 2)][(x),(y)] = [(3),(2)]`, then x = 1 and y = – 1
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______
If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix
The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.
If A and B are matrices of same order, then (3A –2B)′ is equal to______.
If two matrices A and B are of the same order, then 2A + B = B + 2A.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.
For any square matrix A, AAT is a ____________.
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
If a matrix A is both symmetric and skew-symmetric, then ____________.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
The matrix A `=[(0,1),(1,0)]` is a ____________.
The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]` is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A matrix is said to be a column matrix if it has
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
If all the elements are zero, then matrix is said to be
A = `[a_(ij)]_(m xx n)` is a square matrix, if
If 'A' is square matrix, such that A2 = A, then (7 + A)3 = 7A is equal to
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
Let A be a 2 × 2 real matrix with entries from {0, 1} and |A| ≠ 0. Consider the following two statements:
(P) If A1I2, then |A| = –1
(Q) If |A| = 1, then tr(A) = 2,
where I2 denotes 2 × 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then ______.
If the sides a, b, c of ΔABC satisfy the equation 4x3 – 24x2 + 47x – 30 = 0 and `|(a^2, (s - a)^2, (s - a)^2),((s - b)^2, b^2, (s - b)^2),((s - c)^2, (s - c)^2, c^2)| = p^2/q` where p and q are co-prime and s is semiperimeter of ΔABC, then the value of (p – q) is ______.
If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.
The minimum number of zeros in an upper triangular matrix will be ______.
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.
If `[(1, 2, 1),(2, 3, 1),(3, a, 1)]` is non-singular matrix and a ∈ A, then the set A is ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.
If A is a square matrix of order 3, then |2A| is equal to ______.
A matrix which is both symmetric and skew symmetric matrix is a ______.