हिंदी

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.

विकल्प

  • A

  • I – A

  • I

  • 3A

MCQ
रिक्त स्थान भरें

उत्तर

If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to I.

Explanation:

Given : A2 = A

∵ A3 = A2. A

= A.A = A2 = A

∴ (I + A)3 - 7A = I3 +3i2 A + 3IA2 + A3 - 7A

= I3 + 3IA + 3IA2 + A3 - 7A

= I + 3A + 3A2 + A3 - 7A

= I + 3A + 3A + A2 . A - 7A

= I + 3A + 3A + A - 7A

= 7A - 7A + I

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise 3.5 [पृष्ठ १०१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise 3.5 | Q 15 | पृष्ठ १०१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 If A is a square matrix such that A2 = I, then find the simplified value of (A – I)3 + (A + I)3 – 7A.


Find the value of x, y, and z from the following equation:

`[(4,3),(x,5)] = [(y,z),(1,5)]`


Find the value of x, y, and z from the following equation:

`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`


Let A = `[(0,1),(0,0)]`show that (aI+bA)n  = anI + nan-1 bA , where I is the identity matrix of order 2 and n ∈ N


Find the matrix X so that  X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`


If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.


Given two matrices A and B 

`A = [(1,-2,3),(1,4,1),(1,-3, 2)]  and B  = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`

find AB and use this result to solve the following system of equations:

x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1


In a certain city there are 30 colleges. Each college has 15 peons, 6 clerks, 1 typist and 1 section officer. Express the given information as a column matrix. Using scalar multiplication, find the total number of posts of each kind in all the colleges.


If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.


Choose the correct alternative.

The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(0, 4, 7),(-4, 0, -3),(-7, 3, 0)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(5),(4),(-3)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(6, 0),(0, 6)]`


Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:

`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`


Find k if the following matrix is singular:

`[(7, 3),(-2, "k")]`


Find k if the following matrix is singular:

`[(4, 3, 1),(7, "k", 1),(10, 9, 1)]`


The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:

`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`


If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.


If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2


Select the correct option from the given alternatives:

Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______


Answer the following question:

If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C


Answer the following question:

If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.


Answer the following question:

If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices


If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix


The matrix A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` is a ______.


If A and B are matrices of same order, then (3A –2B)′ is equal to______.


Show by an example that for A ≠ O, B ≠ O, AB = O


A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.


If `[("a","b"),("c", "-a")]`is a square root of the 2 x 2 identity matrix, then a, b, c satisfy the relation ____________.


If A is a square matrix, then A – A’ is a ____________.


For any square matrix A, AAT is a ____________.


If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.


If a matrix A is both symmetric and skew-symmetric, then ____________.


The matrix A `=[(0,1),(1,0)]` is a ____________.


A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an


If all the elements are zero, then matrix is said to be


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×