Advertisements
Advertisements
प्रश्न
Show that sec h-1(sin θ) =log cot (`theta/2` ).
उत्तर
LHS = sec h-1(sin θ)
Let y = sec h-1(sin θ)
sec hy = sin θ
`1/sintheta= 1/(secℎy)`
cos hy = cosec θ
y = cos h-1(cosec θ)
but cos h-1x = log |𝑥+ `sqrt(x2−1)`|
∴ y = log |cosec θ+ `sqrt(cosec2 θ−1)`|
∴ y = log |𝑐𝑜𝑠𝑒𝑐 𝜃+cot𝜃|
= log |`1/sintheta + costheta/sintheta` |
= log |`(1+costheta)/sintheta`|
= log |`(2 cos^2 theta/2)/(2cos theta/2 sin theta/2)`|
= log |`(cos theta/2)/(sin theta/2)`|
= log cot (`theta/2`).
= RHS
∴ LHS = RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove that log `[tan(pi/4+(ix)/2)]=i.tan^-1(sinhx)`
If `Z=x^2 tan-1y /x-y^2 tan -1 x/y del`
Prove that `(del^z z)/(del_ydel_x)=(x^2-y^2)/(x^2+y^2)`
Show that `ilog((x-i)/(x+i))=pi-2tan6-1x`
Prove that `log(secx)=1/2x^2+1/12x^4+.........`
If y = log `[tan(pi/4+x/2)]`Prove that
I. tan h`y/2 = tan pi/2`
II. cos hy cos x = 1