Advertisements
Advertisements
प्रश्न
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
उत्तर
Here, A = `[(2, 4, 0),(3, 9, 6)]`, B = `[(1, 4),(2, 8),(1, 3)]`
AB = `[(2, 4, 0),(3, 9, 6)] [(1, 4),(2, 8),(1, 3)]`
= `[(2 + 8 + 0, 8 + 32 + 0),(3 + 18 + 6, 12 + 72 + 18)]`
= `[(10, 40),(27, 102)]`
L.H.S. (AB)' = `[(10, 27),(40, 102)]`
Now B = `[(1, 4),(2, 8),(1, 3)]`
⇒ B' = `[(1, 2, 1),(4, 8, 3)]`
A = `[(2, 4, 0),(3, 9, 6)]`
⇒ A' = `[(2, 3),(4, 90),(0, 6)]`
R.H.S. B'A' = `[(1, 2, 1),(4, 8, 3)][(2, 3),(4, 9),(0, 6)]`
= `[(2 + 8 + 0, 3 + 18 + 6),(8 + 32 + 0, 12 72 + 18)]`
=`[(10, 27),(40, 102)]`
= L.H.S.
Hence, L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
If for any 2 x 2 square matrix A, `A("adj" "A") = [(8,0), (0,8)]`, then write the value of |A|
Find the value of x, y, and z from the following equation:
`[(x+y, 2),(5+z, xy)] = [(6,2), (5,8)]`
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
if the matrix A =`[(0,a,-3),(2,0,-1),(b,1,0)]` is skew symmetric, Find the value of 'a' and 'b'
A coaching institute of English (subject) conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, it has 20 poor and 5 rich children and total monthly collection is Rs 9,000, whereas in batch II, it has 5 poor and 25 rich children and total monthly collection is Rs 26,000. Using matrix method, find monthly fees paid by each child of two types. What values the coaching institute is inculcating in the society?
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
Answer the following question:
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)]`, B = `[(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, show that AB and BA are both singular matrices
If A and B are matrices of same order, then (3A –2B)′ is equal to______.
If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
If A is a square matrix such that A2 = A, then (I + A)2 - 3A is ____________.
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
A = `[a_(ij)]_(m xx n)` is a square matrix, if
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.