Advertisements
Advertisements
प्रश्न
Given A = `[(2, 4, 0),(3, 9, 6)]` and B = `[(1, 4),(2, 8),(1, 3)]` is (AB)′ = B′A′?
उत्तर
Here, A = `[(2, 4, 0),(3, 9, 6)]`, B = `[(1, 4),(2, 8),(1, 3)]`
AB = `[(2, 4, 0),(3, 9, 6)] [(1, 4),(2, 8),(1, 3)]`
= `[(2 + 8 + 0, 8 + 32 + 0),(3 + 18 + 6, 12 + 72 + 18)]`
= `[(10, 40),(27, 102)]`
L.H.S. (AB)' = `[(10, 27),(40, 102)]`
Now B = `[(1, 4),(2, 8),(1, 3)]`
⇒ B' = `[(1, 2, 1),(4, 8, 3)]`
A = `[(2, 4, 0),(3, 9, 6)]`
⇒ A' = `[(2, 3),(4, 90),(0, 6)]`
R.H.S. B'A' = `[(1, 2, 1),(4, 8, 3)][(2, 3),(4, 9),(0, 6)]`
= `[(2 + 8 + 0, 3 + 18 + 6),(8 + 32 + 0, 12 72 + 18)]`
=`[(10, 27),(40, 102)]`
= L.H.S.
Hence, L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
If for any 2 x 2 square matrix A, `A("adj" "A") = [(8,0), (0,8)]`, then write the value of |A|
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
Show that a matrix A = `1/2[(sqrt2,-isqrt2,0),(isqrt2,-sqrt2,0),(0,0,2)]` is unitary.
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
Find the non-singular matrices P & Q such that PAQ is in normal form where`[(1,2,3,4),(2,1,4,3),(3,0,5,-10)]`
If li, mi, ni, i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AAT = I, where \[A = \begin{bmatrix}l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3\end{bmatrix}\]
If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find x, y, z If `[(0, -5"i", x),(y, 0, z),(3/2, -sqrt(2), 0)]` is a skew symmetric matrix.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
Construct the matrix A = [aij]3 × 3 where aij = i − j. State whether A is symmetric or skew-symmetric.
Answer the following question:
If A = `[(1, 2),(3, 2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, -3)]`, show that AB is singular.
Answer the following question:
If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix
Choose the correct alternative:
If A = `[(2, 0),(0, 2)]`, then A2 – 3I = ______
AB = AC ⇒ B = C for any three matrices of same order.
Show by an example that for A ≠ O, B ≠ O, AB = O
If X and Y are 2 × 2 matrices, then solve the following matrix equations for X and Y.
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
If A is a square matrix, then A – A’ is a ____________.
A square matrix B = [bÿ] m × m is said to be a diagonal matrix if all diagonal elements are
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
A = `[a_(ij)]_(m xx n)` is a square matrix, if
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
The minimum number of zeros in an upper triangular matrix will be ______.
If A = `[(5, x),(y, 0)]` and A = AT, where AT is the transpose of the matrix A, then ______.
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.