Advertisements
Advertisements
प्रश्न
Find the matrix X so that X`[(1,2,3),(4,5,6)]= [(-7,-8,-9),(2,4,6)]`
उत्तर
X = `[(a,b), (c,d)]`
`"X"[(1,2,3), (4,5,6)] = [(a,b), (c,d)][(1,2,3), (4,5,6)]`
= `[(a + 4b,2a + 5b,3a + 6b), (c + 4d, 2c + 5d, 3c + 6d)]`
= `[(-7,-8,-9), (2,4,6)]` ...(Given)
Keeping corresponding elements same,
a + 4b = -7 ...(1)
2a + 5b = -8 ...(2)
- - +
3a + 6b = -9 ...(3)
Multiplying equation (1) by 2 and subtracting it from equation (2),
2a + 8b = -14
2a + 5b = -8
- - +
3b = -6
b = -2
Putting the value of b in equation (3),
3a + 6 × (-2) = -9
3a - 12 = -9
3a = 12 - 9 = 3
a = 1
Keeping the corresponding elements of the second row same,
c + 4d = 2 ...(4)
2c + 5d = 4 ...(5)
3c + 6d = 6 ...(6)
On multiplying equation (4) by 2 and subtracting it from equation (5), we get
2c + 8d = 4
2c + 5d = 4
- - +
3d = 0
d = 0
Putting the value of d in equation (6),
3c = 6
c = 2
Hence, X = `[(1, -2), (2, 0)]`
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Use product `[(1,-1,2),(0,2,-3),(3,-2,4)][(-2,0,1),(9,2,-3),(6,1,-2)]` to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3
Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`
Given two matrices A and B
`A = [(1,-2,3),(1,4,1),(1,-3, 2)] and B = [(11,-5,-14),(-1, -1,2),(-7,1,6)]`
find AB and use this result to solve the following system of equations:
x - 2y + 3z = 6, x + 4x + z = 12, x - 3y + 2z = 1
If 𝒙 = r cos θ and y= r sin θ prove that JJ-1=1.
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.
Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, -2, 4),(0, 0, -5),(0, 0, 0)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Identify the following matrix is singular or non-singular?
`[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
If A and B are matrices of same order, then (3A –2B)′ is equal to______.
For the non singular matrix A, (A′)–1 = (A–1)′.
The matrix `[(0,5,-7),(-5,0,11),(7,-11,0)]` is ____________.
The matrix A `=[(0,1),(1,0)]` is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
`root(3)(4663) + 349` = ? ÷ 21.003
`[(5sqrt(7) + sqrt(7)) + (4sqrt(7) + 8sqrt(7))] - (19)^2` = ?
A matrix is said to be a column matrix if it has
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
The number of all possible matrices of order 3/3, with each entry 0 or 1 is
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If D = `[(0, aα^2, aβ^2),(bα + c, 0, aγ^2),(bβ + c, (bγ + c), 0)]` is a skew-symmetric matrix (where α, β, γ are distinct) and the value of `|((a + 1)^2, (1 - a), (2 - c)),((3 + c), (b + 2)^2, (b + 1)^2),((3 - b)^2, b^2, (c + 3))|` is λ then the value of |10λ| is ______.
How many matrices can be obtained by using one or more numbers from four given numbers?
Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.