Advertisements
Advertisements
प्रश्न
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.
पर्याय
Both Assertion and Reason are true and Reason is the correct explanation for Assertion.
Both Assertion and Reason are true but Reason is not the correct explanation for Assertion.
Assertion is true and Reason is false.
Assertion is false and Reason is true.
उत्तर
Both Assertion and Reason are true and Reason is the correct explanation for Assertion.
Explanation:
We have, A = `[(-3, 2),(-5, 4)]`, B = `[(4, -2),(5, -3)]`
Now, AB = `[(-3, 2),(-5, 4)][(4, -2),(5, -3)] = [(-2, 0),(0, -2)]`
And BA = `[(4, -2),(5, -3)][(-3, 2),(-5, 4)] = [(-2, 0),(0, -2)]`
Hence, AB = BA
Now, A2 = `[(-3, 2),(-5, 4)][(-3, 2),(-5, 4)] = [(-1, 2),(-5, 6)]`
So, A2B = `[(-1, 2),(-5, 6)][(4, -2),(5, -3)] = [(6, -4),(10, -8)]`
And BA2 = `[(4, -2),(5, -3)][(-1, 2),(-5, 6)] = [(6, -4),(10, -8)]`
Hence, A2B = BA2
If, AB = BA and A2B = BA2...............
Therefore, AnB = BAn
Also, A100B = BA100
Hence, Assertion and Reason both are true.
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(4,3),(x,5)] = [(y,z),(1,5)]`
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
Show that (A + A') is symmetric matrix, if `A = ((2,4),(3,5))`
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
if `vec"a"= 2hat"i" + 3hat"j"+ hat"k", vec"b" = hat"i" -2hat"j" + hat"k" and vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`
Choose the correct alternative.
The matrix `[(8, 0, 0),(0, 8, 0),(0, 0, 8)]` is _______
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(5),(4),(-3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[9 sqrt(2) -3]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(3, 0, 0),(0, 5, 0),(0, 0, 1/3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(2, 5, 1),(-5, 4, 6),(-1, -6, 3)]`
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]`
If A = `[(1, 0),(-1, 7)]`, find k so that A2 – 8A – kI = O, where I is a unit matrix and O is a null matrix of order 2.
If A = `[(3, 1),(-1, 2)]`, prove that A2 – 5A + 7I = 0, where I is unit matrix of order 2
Answer the following question:
If A = diag [2 –3 –5], B = diag [4 –6 –3] and C = diag [–3 4 1] then find 2A + B – 5C
Answer the following question:
If A = `[(1, omega),(omega^2, 1)]`, B = `[(omega^2, 1),(1, omega)]`, where ω is a complex cube root of unity, then show that AB + BA + A −2B is a null matrix
State whether the following statement is True or False:
If A is non singular, then |A| = 0
If A is a square matrix of order 2 such that A(adj A) = `[(7, 0),(0, 7)]`, then |A| = ______
If A = `[(1, 3, 3),(3, 1, 3),(3, 3, 1)]`, then show that A2 – 5A is a scalar matrix
AB = AC ⇒ B = C for any three matrices of same order.
If A = `[(0,0,0),(0,0,0),(0,1,0)]` then A is ____________.
A square matrix A = [aij]nxn is called a diagonal matrix if aij = 0 for ____________.
For any square matrix A, AAT is a ____________.
If a matrix A is both symmetric and skew-symmetric, then ____________.
A diagonal matrix is said to be a scalar matrix if its diagonal elements are
Find X, If `[X - 5 - 1] [(1, 0, 2),(0, 2, 1),(2, 0, 3)][(x),(4),(1)] ` = 0
A diagonal matrix in which all diagonal elements are same, is called a ______ matrix.
If A is a square matrix of order 3, then |2A| is equal to ______.
A matrix which is both symmetric and skew symmetric matrix is a ______.