Advertisements
Advertisements
प्रश्न
पर्याय
- \[\frac{\pi}{12}\]
- \[\frac{\pi}{6}\]
- \[\frac{\pi}{4}\]
- \[\frac{\pi}{3}\]
\[\frac{\pi}{2}\]
\[\frac{2\pi}{3}\]
उत्तर
Explanation:
Let I = `int_1^sqrt(3) dx/(1 + x^2)`
= `[tan^-1 x]_1^sqrt(3)`
= `tan^-1 sqrt(3) - tan^-1 1`
= `π/3 - π/4`
= `(4π - 3π)/12`
= `π/12`
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.