मराठी

Evaluate d∫x2dxx4+x2-2 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`

बेरीज

उत्तर

Let x2 = t.

Then `x^2/(x^4 + x^2 - 2) = "t"/("t"^2 + "t" - 2)`

= `"t"/(("t" + 2)("t" - 1))`

= `"A"/("t" + 2) + "B"/("t" - 1)`

So t = A(t – 1) + B(t + 2)

Comparing coefficients, we get A = `2/3`, B = `1/3`.

So `x^2/(x^4 + x^2 - 2) = 2/3 1/(x^2 + 2) + 1/3 1/(x^2 - 1)`

Therefore, `int x^2/(x^4 + x^2 - 2) "d"x`

= `2/3 int 1/(x^2 + 2) "d"x + 1/3 int "dx"/(x^2 - 1)`

= `2/3 1/sqrt(2) tan^-1  x/sqrt(2) + 1/6 log |(x + 1)/(x + 1)| + "C"`

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Solved Examples [पृष्ठ १५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Solved Examples | Q 15 | पृष्ठ १५४

संबंधित प्रश्‍न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

Γ(1) is


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×