Advertisements
Advertisements
प्रश्न
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
उत्तर
Let x2 = t.
Then `x^2/(x^4 + x^2 - 2) = "t"/("t"^2 + "t" - 2)`
= `"t"/(("t" + 2)("t" - 1))`
= `"A"/("t" + 2) + "B"/("t" - 1)`
So t = A(t – 1) + B(t + 2)
Comparing coefficients, we get A = `2/3`, B = `1/3`.
So `x^2/(x^4 + x^2 - 2) = 2/3 1/(x^2 + 2) + 1/3 1/(x^2 - 1)`
Therefore, `int x^2/(x^4 + x^2 - 2) "d"x`
= `2/3 int 1/(x^2 + 2) "d"x + 1/3 int "dx"/(x^2 - 1)`
= `2/3 1/sqrt(2) tan^-1 x/sqrt(2) + 1/6 log |(x + 1)/(x + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(1) is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`