Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`
उत्तर
The given definite integral = `int_(-1)^2|x(x - 1)(x - 2)|dx`
= `int_(-1)^0 |x(x - 1)(x - 2)|dx + int_0^1 |x(x - 1)(x - 2)|dx + int_1^2 |x(x - 1)(x - 2)|dx`
= `- int_(-1)^0 (x^3 - 3x^2 + 2x)dx + int_0^1 (x^3 - 3x^2 + 2x)dx - int_1^2 (x^3 - 3x^2 + 2x)dx`
= `- [x^4/4 - x^3 + x^2]_(-1)^0 + [x^4/4 - x^3 + x^2]_0^1 - [x^4/4 - x^3 + x^2]_1^2`
= `9/4 + 1/4 + 1/4 = 11/4`
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
Γ(1) is