Advertisements
Advertisements
प्रश्न
उत्तर
Let
\[= \int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\cos^6 x \left( \tan^3 x + 1 \right)^2}dx\]
\[ = \int_0^\frac{\pi}{4} \frac{\tan^2 x \sec^2 x}{\left( \tan^3 x + 1 \right)^2}dx\]
Put
\[\therefore 3 \tan^2 x \sec^2 xdx = dz\]
\[ \Rightarrow \tan^2 x \sec^2 xdx = \frac{dz}{3}\]
When
When
\[\therefore I = \frac{1}{3} \int_1^2 \frac{dz}{z^2}\]
\[ = \left.\frac{1}{3} \times - \frac{1}{z}\right|_1^2 \]
\[ = - \frac{1}{3}\left( \frac{1}{2} - 1 \right)\]
\[ = - \frac{1}{3} \times \left( - \frac{1}{2} \right)\]
\[ = \frac{1}{6}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
Write the coefficient a, b, c of which the value of the integral
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.