Advertisements
Advertisements
प्रश्न
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
उत्तर
Let v = b2 + c2x2, then dv = 2c2 xdx
Therefore, `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
= `(3"a")/(2"c"^2) int "dv"/"v"`
= `(3"a")/("c"^2) log |"b"^2 + "c"^2x^2| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.