Advertisements
Advertisements
प्रश्न
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
उत्तर
Let v = b2 + c2x2, then dv = 2c2 xdx
Therefore, `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
= `(3"a")/(2"c"^2) int "dv"/"v"`
= `(3"a")/("c"^2) log |"b"^2 + "c"^2x^2| + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`