Advertisements
Advertisements
प्रश्न
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
उत्तर
`int((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2)) "d"x`
= `int 2"a"(x)^((-1)/2) "d"x - int "b"x^-2 "d"x + int 3"c" x^(2/3) "d"x`
= `4"a" sqrt(x) + "b"/x + (9"c"x^(5/3))/5 + "C"`.
APPEARS IN
संबंधित प्रश्न
Write the coefficient a, b, c of which the value of the integral
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Find: `int logx/(1 + log x)^2 dx`