Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^4 \frac{1}{\sqrt{16 - x^2}} d x\]
\[ = \int_0^4 \frac{1}{\sqrt{4^2 - x^2}} d x\]
\[ = \left[ \sin^{- 1} \frac{x}{4} \right]_0^4 \]
\[ = \left( \frac{\pi}{2} - 0 \right)\]
\[ = \frac{\pi}{2}\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(n) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int x^3/(x + 1)` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.