Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
उत्तर
\[Let, I = \int_0^\frac{\pi}{4} e^x \sin x d x ..............(1)\]
\[ = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} e^x \cos x dx\]
\[ = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} e^x \sin x dx\]
\[ \Rightarrow I = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} - I ..............\left[\text{Using (1)} \right] \]
\[ \Rightarrow 2I = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} \]
\[ = - \frac{1}{\sqrt{2}} e^\frac{\pi}{4} + 1 + \frac{1}{\sqrt{2}} e^\frac{\pi}{4} - 0\]
\[ = 1\]
\[\text{Hence }I = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Prove that:
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.