हिंदी

2 ∫ 1 X + 3 X ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

उत्तर

\[Let\ I = \int_1^2 \frac{x + 3}{x\left( x + 2 \right)} d x . Then, \]
\[I = \int_1^2 \left( \frac{x}{x\left( x + 2 \right)} + \frac{3}{x\left( x + 2 \right)} \right) d x\]
\[ \Rightarrow I = \int_1^2 \frac{dx}{\left( x + 2 \right)} + \int_1^2 \frac{3}{x\left( x + 2 \right)} d x\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \int_1^2 \left( \frac{1}{x} - \frac{1}{x + 2} \right) dx\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \left[ \log x - \log \left( x + 2 \right) \right]_1^2 \]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ \log 2 - \log 4 - 0 + \log 3 \right]\]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ - \log 2 + \log 3 \right]\]
\[ \Rightarrow I = 2 \log 2 - \log 3 + \frac{3}{2} \log 3 - \frac{3}{2} \log 2\]
\[ \Rightarrow I = \frac{1}{2} \log 2 + \frac{1}{2} \log 3\]
\[ \Rightarrow I = \frac{1}{2}\left( \log 2 + \log 3 \right)\]
\[ \Rightarrow I = \frac{1}{2} \log 6\]
shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 37 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^2 \log\ x\ dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×