Advertisements
Advertisements
प्रश्न
उत्तर
\[I = \int_1^2 \left( \frac{x}{x\left( x + 2 \right)} + \frac{3}{x\left( x + 2 \right)} \right) d x\]
\[ \Rightarrow I = \int_1^2 \frac{dx}{\left( x + 2 \right)} + \int_1^2 \frac{3}{x\left( x + 2 \right)} d x\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \int_1^2 \left( \frac{1}{x} - \frac{1}{x + 2} \right) dx\]
\[ \Rightarrow I = \left[ \log \left( x + 2 \right) \right]_1^2 + \frac{3}{2} \left[ \log x - \log \left( x + 2 \right) \right]_1^2 \]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ \log 2 - \log 4 - 0 + \log 3 \right]\]
\[ \Rightarrow I = \log 4 - \log 3 + \frac{3}{2}\left[ - \log 2 + \log 3 \right]\]
\[ \Rightarrow I = 2 \log 2 - \log 3 + \frac{3}{2} \log 3 - \frac{3}{2} \log 2\]
\[ \Rightarrow I = \frac{1}{2} \log 2 + \frac{1}{2} \log 3\]
\[ \Rightarrow I = \frac{1}{2}\left( \log 2 + \log 3 \right)\]
\[ \Rightarrow I = \frac{1}{2} \log 6\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: