Advertisements
Advertisements
प्रश्न
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
योग
उत्तर
Let I = `int_0^1 log (1/x - 1) "d"x`
I = `int_0^1 log ((1 - x)/x) "d"x` ........(1)
Using the property
`int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" -x) "d"x`
I = `int_0^1 log (1/(1 - x) - 1) "d"x`
= `int_0^1 log((1 - (1 - x))/(1 - x)) "d"x`
= `int_0^1 log(x/(1 - x)) "d"x`
Adding (1) and (2)
I + I = `int_0^1 log((1 - x)/x) "d"x + int_0^1 log (x/(1 - x )) "d"x`
2I = `int_0^1 log [((1 - x))/x xx x/((1 - x))] "d"x`
2I = `int_0^1 log(1) "d"x` = 0
∴ I = 0
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]
\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]
\[\int\limits_1^2 x^2 dx\]
\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals
\[\int\limits_0^{2\pi} \cos^7 x dx\]
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.