Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
\[ = \int_0^\frac{\pi}{4} \left[ a^2 \left( \frac{1 + \cos2x}{2} \right) + b^2 \left( \frac{1 - \cos2x}{2} \right) \right]dx\]
\[ = \int_0^\frac{\pi}{4} \left[ \left( \frac{a^2 + b^2}{2} \right) + \left( \frac{a^2 - b^2}{2} \right)\cos2x \right]dx\]
\[ = \left( \frac{a^2 + b^2}{2} \right) \int_0^\frac{\pi}{4} dx + \left( \frac{a^2 - b^2}{2} \right) \int_0^\frac{\pi}{4} \cos2xdx\]
\[= \left.\left( \frac{a^2 + b^2}{2} \right) \times x\right|_0^\frac{\pi}{4} + \left.\left( \frac{a^2 - b^2}{2} \right) \times \frac{\sin2x}{2}\right|_0^\frac{\pi}{4} \]
\[ = \left( \frac{a^2 + b^2}{2} \right)\left( \frac{\pi}{4} - 0 \right) + \left( \frac{a^2 - b^2}{4} \right)\left( \sin\frac{\pi}{2} - \sin0 \right)\]
\[ = \left( \frac{a^2 + b^2}{2} \right)\frac{\pi}{4} + \left( \frac{a^2 - b^2}{4} \right)\left( 1 - 0 \right)\]
\[ = \left( a^2 + b^2 \right)\frac{\pi}{8} + \frac{1}{4}\left( a^2 - b^2 \right)\]
APPEARS IN
संबंधित प्रश्न
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(1) is