Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\frac{\pi}{2} \cos^2 x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \cos^2 x\ d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\frac{\pi}{2} \left( 1 + \cos 2x \right) dx \left[ \because \cos 2x = 2 \cos^2 x - 1 \right]\]
\[ \Rightarrow I = \left[ \frac{x}{2} + \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi}{4} + 0 - 0\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Write the coefficient a, b, c of which the value of the integral
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 x "d"x`
Choose the correct alternative:
Γ(n) is
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1