Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
उत्तर
We have,
\[I = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\sin x + \cos x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\cos x + \sin x} dx ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sin^2 x}{\sin x + \cos x} + \frac{\cos^2 x}{\cos x + \sin x} \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} \right] dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx\]
\[\text{Putting }\tan\frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]
\[\text{When }x \to 0; t \to 0\]
\[\text{and }x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore 2I = \int_0^1 \frac{2dt}{2t + 1 - t^2} dx\]
\[ = 2 \int_0^1 \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]
\[ = \frac{2}{2\sqrt{2}} \left[ \log\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| \right]_0^1 \]
\[ = \frac{1}{\sqrt{2}}\left[ \log\left( \frac{\sqrt{2}}{\sqrt{2}} \right) - log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right] \]
\[ = \frac{1}{\sqrt{2}}\left[ 0 - \log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right]\]
\[ = - \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right|\]
\[ = \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right|\]
\[ = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]
\[2I = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{2 - 1} \right]\]
\[2I = \frac{2}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]
\[\text{Hence }I = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate :
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`