हिंदी

Π / 2 ∫ 0 Sin 2 X Sin X + Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]

योग

उत्तर

We have,

\[I = \int_0^\frac{\pi}{2} \frac{\sin^2 x}{\sin x + \cos x} d x ..............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^2 \left( \frac{\pi}{2} - x \right)}{\sin\left( \frac{\pi}{2} - x \right) + \cos\left( \frac{\pi}{2} - x \right)} d x\]

\[ = \int_0^\frac{\pi}{2} \frac{\cos^2 x}{\cos x + \sin x} dx ................(2)\]

Adding (1) and (2)

\[2I = \int_0^\frac{\pi}{2} \left[ \frac{\sin^2 x}{\sin x + \cos x} + \frac{\cos^2 x}{\cos x + \sin x} \right] d x\]

\[ = \int_0^\frac{\pi}{2} \left[ \frac{1}{\sin x + \cos x} \right] dx\]

\[ = \int_0^\frac{\pi}{2} \left[ \frac{1 + \tan^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} \right] dx\]

\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{2\tan\frac{x}{2} + 1 - \tan^2 \frac{x}{2}} dx\]

\[\text{Putting }\tan\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]

\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2 dt\]

\[\text{When }x \to 0; t \to 0\]

\[\text{and }x \to \frac{\pi}{2}; t \to 1\]

\[ \therefore 2I = \int_0^1 \frac{2dt}{2t + 1 - t^2} dx\]

\[ = 2 \int_0^1 \frac{dt}{\left( \sqrt{2} \right)^2 - \left( t - 1 \right)^2}\]

\[ = \frac{2}{2\sqrt{2}} \left[ \log\left| \frac{\sqrt{2} + t - 1}{\sqrt{2} - t + 1} \right| \right]_0^1 \]

\[ = \frac{1}{\sqrt{2}}\left[ \log\left( \frac{\sqrt{2}}{\sqrt{2}} \right) - log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right] \]

\[ = \frac{1}{\sqrt{2}}\left[ 0 - \log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right| \right]\]

\[ = - \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \right|\]

\[ = \frac{1}{\sqrt{2}}\log\left| \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \right|\]

\[ = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)\left( \sqrt{2} + 1 \right)}{\left( \sqrt{2} - 1 \right)\left( \sqrt{2} + 1 \right)} \right]\]

\[2I = \frac{1}{\sqrt{2}}\log\left[ \frac{\left( \sqrt{2} + 1 \right)^2}{2 - 1} \right]\]

\[2I = \frac{2}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]

\[\text{Hence }I = \frac{1}{\sqrt{2}}\log\left( \sqrt{2} + 1 \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 53 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 


If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×