Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\pi \frac{1}{1 + \sin x} d\ x\ . Then, \]
\[ I = \int_0^\pi \frac{1 - \sin x}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x} dx \]
\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{\cos^2 x} dx \left[ \because \sin^2 x + \cos^2 x = 1 \right]\]
\[ \Rightarrow I = \int_0^\pi \sec^2 x - \sec x \tan x dx\]
\[ \Rightarrow I = \left[ \tan x - \sec x \right]_0^\pi \]
\[ \Rightarrow I = \left( \tan \pi - \sec \pi \right) - \left( \tan 0 - \sec 0 \right)\]
\[ \Rightarrow I = 0 + 1 - \left( 0 - 1 \right)\]
\[ \Rightarrow I = 1 + 1\]
\[ \Rightarrow I = 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
The value of `int_2^3 x/(x^2 + 1)`dx is ______.