Advertisements
Advertisements
प्रश्न
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
उत्तर
\[\int_0^1 co t^{- 1} \left( 1 - x + x^2 \right) d x\]
\[ = \int_0^1 co t^{- 1} \left[ x\left( x - 1 \right) + 1 \right] d x\]
\[ = \int_0^1 co t^{- 1} \left[ \frac{\left( x\left( x - 1 \right) + 1 \right)}{x - \left( x - 1 \right)} \right] d x\]
\[ = \int_0^1 co t^{- 1} x - co t^{- 1} \left( x - 1 \right) dx\]
\[ = \left[ xco t^{- 1} x \right]_0^1 + \int_0^1 \frac{x}{1 + x^2}dx - \left[ \left( x - 1 \right)co t^{- 1} \left( x - 1 \right) \right]_0^1 - \int_0^1 \frac{\left( x - 1 \right)}{1 + \left( x - 1 \right)^2}dx\]
\[ = \left[ xco t^{- 1} x \right]_0^1 + \frac{1}{2} \left[ \log\left( 1 + x^2 \right) \right]_0^1 - \left[ \left( x - 1 \right)co t^{- 1} \left( x - 1 \right) \right]_0^1 - \frac{1}{2} \left[ \log\left( 1 + \left( 1 - x \right)^2 \right) \right]_0^1 \]
\[ = \frac{\pi}{4} - \frac{1}{2}\log2 + \frac{\pi}{4} - \frac{1}{2}\log2\]
\[ = \frac{\pi}{2} - \log2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Prove that:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.