Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^\sqrt{2} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left[ x^2 \right] dx + \int\limits_1^\sqrt{2} \left[ x^2 \right] dx\]
\[ = \int\limits_0^1 \left( 0 \right)dx + \int\limits_1^\sqrt{2} \left( 1 \right)dx .................\left( \because \left[ x^2 \right] = \begin{cases}0&& 0 < x < 1\\1&& 1 < x < \sqrt{2}\end{cases} \right)\]
\[ = 0 + \left[ x \right]_1^\sqrt{2} \]
\[ = \sqrt{2} - 1\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.