Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = a, b = b, f\left( x \right) = \cos x, h = \frac{b - a}{n}\]
Therefore,
\[I = \int_a^b \cos x d x\]
\[ = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \cos\left( a \right) + \cos\left( a + h \right) + . . . + \cos\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \frac{\cos\left\{ a + \left( n - 1 \right)\frac{h}{2} \right\}\sin\frac{nh}{2}}{\sin\frac{h}{2}} \right]\]
\[ = \lim_{h \to 0} \left[ \frac{\frac{h}{2}}{\sin\frac{h}{2}}2\cos\left( a + \frac{b - a}{2} - \frac{h}{2} \right) \sin\left( \frac{b - a}{2} \right) \right] ..............\left(\text{Using }nh = b - a \right)\]
\[ = \lim_{h \to 0} \frac{\frac{h}{2}}{\sin\frac{h}{2}} \times \lim_{h \to 0} 2\cos\left( \frac{a + b}{2} - \frac{h}{2} \right)\sin\left( \frac{b - a}{2} \right)\]
\[ = 2\cos\left( \frac{a + b}{2} \right)\sin\left( \frac{b - a}{2} \right)\]
\[ = \sin b - \sin a .....................\left[\text{Since, }2\cos A \sin B = \sin\left( A + B \right) - \sin\left( A - B \right) \right]\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
If f(2a − x) = −f(x), prove that
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`