Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^2 x\sqrt{2 - x} d x\]
\[ = \int_0^2 \left( 2 - x \right)\sqrt{2 - 2 + x} d x\]
\[ = \int_0^2 \left( 2 - x \right)\sqrt{x} d x\]
\[ = \int_0^2 \left( 2\sqrt{x} - x\sqrt{x} \right) dx\]
\[ = \int_0^2 \left( 2 x^\frac{1}{2} - x^\frac{3}{2} \right) dx\]
\[ = \left[ 2\frac{x^\frac{3}{2}}{\frac{3}{2}} - \frac{x^\frac{5}{2}}{\frac{5}{2}} \right]_0^2 \]
\[ = \left[ \frac{4}{3} x^\frac{3}{2} - \frac{2}{5} x^\frac{5}{2} \right]_0^2 \]
\[ = \frac{8\sqrt{2}}{3} - \frac{8\sqrt{2}}{5} \]
`=(5xx8sqrt2)/(3xx5)-(3xx8sqrt2)/(5xx3)`
`=(16sqrt2)/15`
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.