Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\frac{\pi}{4} \sec x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{4} \sec x \frac{\sec x + \tan x}{\sec x + \tan x} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{4} \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} d x\]
\[Put u = \sec x + \tan x\]
\[ \Rightarrow du = \sec^2 x + \sec x \tan x dx\]
\[ \therefore \int_0^\frac{\pi}{4} \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} d x = \int\frac{du}{u}\]
\[ \Rightarrow I = \left[ \log u \right]\]
\[ \Rightarrow I = \left[ \log \left( \sec x + \tan x \right) \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \log \left( \sec\frac{\pi}{4} + \tan\frac{\pi}{4} \right) - \log \left( \sec 0 + \tan 0 \right)\]
\[ \Rightarrow I = \log (\sqrt{2} + 1) - \log 1\]
\[ \Rightarrow I = \log (\sqrt{2} + 1)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following:
Γ(4)
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`