Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }=\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]
\[= \int_0^\frac{\pi}{2} \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^{n - 1}}dx\]
Put
\[\therefore \left( - \sin\frac{x}{2} \times \frac{1}{2} + \cos\frac{x}{2} \times \frac{1}{2} \right)dx = dz\]
\[ \Rightarrow \left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)dx = 2dz\]
When
When
\[x \to \frac{\pi}{2}, z \to \sqrt{2} ..................\left( z = \cos\frac{\pi}{4} + \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \right)\]
\[\therefore I = 2 \int_1^\sqrt{2} \frac{dz}{z^{n - 1}}\]
\[ = \left.2 \times \frac{z^{2 - n}}{2 - n}\right|_1^\sqrt{2} \]
\[ = \frac{2}{\left( 2 - n \right)}\left[ \left( \sqrt{2} \right)^{2 - n} - 1 \right]\]
\[ = \frac{2}{\left( 2 - n \right)}\left( 2^\frac{2 - n}{2} - 1 \right)\]
\[ = \frac{2}{\left( 2 - n \right)}\left( 2^{1 - \frac{n}{2}} - 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate each of the following integral:
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`