Advertisements
Advertisements
प्रश्न
उत्तर
\[Let I = \int_0^\frac{\pi}{2} x^2 \cos^2 x d x . Then, \]
\[I = \int_0^\frac{\pi}{2} x^2 \left( \frac{1 + \cos 2x}{2} \right)dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \left( \frac{x^2}{2} + \frac{x^2 \cos 2x}{2} \right) dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{x}{2} \sin 2x\ d\ x\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{- x \cos 2x}{4} \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 1 \frac{\cos2x}{2}dx\]
\[ \Rightarrow I = \left[ \frac{x^3}{6} \right]_0^\frac{\pi}{2} + \left[ \frac{x^2 \sin 2x}{4} \right]_0^\frac{\pi}{2} + \left[ \frac{x \cos 2x}{4} \right]_0^\frac{\pi}{2} - \left[ \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^3}{48} - \frac{\pi}{8}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Write the coefficient a, b, c of which the value of the integral
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
Find: `int logx/(1 + log x)^2 dx`