हिंदी

Π / 2 ∫ π / 3 √ 1 + Cos X ( 1 − Cos X ) 3 / 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

उत्तर

\[\int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{3}{2}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{3}{2}} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 - \cos^2 x}}{\left( 1 - \cos x \right)^2}dx\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sin x}{\left( 1 - \cos x \right)^2}dx\]
\[Let\ 1 - \cos x = t, Then\ \sin x\ dx = dt\]
\[When\ x = \frac{\pi}{3}, t = \frac{1}{2} and\ x\ = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[ = \int_\frac{1}{2}^1 \frac{dt}{t^2}\]
\[ = \left[ - \frac{1}{t} \right]_\frac{1}{2}^1 \]
\[ = - 1 + 2\]
\[ = 1\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 53 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Using second fundamental theorem, evaluate the following:

`int_1^"e" ("d"x)/(x(1 + logx)^3`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Find `int x^2/(x^4 + 3x^2 + 2) "d"x`


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×