Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{3}{2}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^\frac{3}{2}} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} d x\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sqrt{1 - \cos^2 x}}{\left( 1 - \cos x \right)^2}dx\]
\[ = \int_\frac{\pi}{3}^\frac{\pi}{2} \frac{\sin x}{\left( 1 - \cos x \right)^2}dx\]
\[Let\ 1 - \cos x = t, Then\ \sin x\ dx = dt\]
\[When\ x = \frac{\pi}{3}, t = \frac{1}{2} and\ x\ = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[ = \int_\frac{1}{2}^1 \frac{dt}{t^2}\]
\[ = \left[ - \frac{1}{t} \right]_\frac{1}{2}^1 \]
\[ = - 1 + 2\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int x^3/(x + 1)` is equal to ______.