Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4 \sin x} d x . \]
\[Let\ \sin\ x\ = t . Then, \cos\ x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{3}, t = \frac{\sqrt{3}}{2}\]
\[ \therefore I = \int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4\sin x} d x\]
\[ = \int_0^\frac{\sqrt{3}}{2} \frac{1}{3 + 4t} d t\]
\[ = \frac{1}{4} \left[ \log \left( 3 + 4t \right) \right]_0^\frac{\sqrt{3}}{2} \]
\[ = \frac{1}{4}\left( \log \left( 3 + 2\sqrt{3} \right) - \log 3 \right)\]
\[ = \frac{1}{4} \log \left( \frac{3 + 2\sqrt{3}}{3} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`