हिंदी

Π / 2 ∫ 0 X 2 Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \sin x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \left[ - 2x \cos x \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 2 \cos x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} + \left[ 2x \cos x \right]_0^\frac{\pi}{2} - \left[ 2 \sin x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} - 2\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.1 | Q 28 | पृष्ठ १७

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^\infty e^{- x} dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_1^e \log x\ dx =\]

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×