Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \sin x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \left[ - 2x \cos x \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 2 \cos x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} + \left[ 2x \cos x \right]_0^\frac{\pi}{2} - \left[ 2 \sin x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} - 2\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If f is an integrable function, show that
Solve each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.