हिंदी

Evaluate the Following Integral: ∫ 1 − 1 | X C O S π X | D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 

योग

उत्तर

\[\text{Let I} =\int_{- 1}^1 \left| xcos\pi x \right|dx\]

Consider

\[f\left( x \right) = \left| xcos\pi x \right|\]

\[f\left( - x \right) = \left| \left( - x \right)cos\pi\left( - x \right) \right| = \left| - xcos\pi x \right| = \left| xcos\pi x \right| = f\left( x \right)\]

\[\therefore I = \int_{- 1}^1 \left| xcos\pi x \right|dx\]
\[ = 2 \int_0^1 \left| xcos\pi x \right|dx ...............\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]

Now,

\[\left| xcos\pi x \right| = \begin{cases}xcos\pi x, & \text{if  }0 \leq x \leq \frac{1}{2} \\ - xcos\pi x, & \text{if }\frac{1}{2} < x \leq 1\end{cases}\]

\[\therefore I = 2\left[ \int_0^\frac{1}{2} xcos\pi xdx + \int_\frac{1}{2}^1 \left( - xcos\pi x \right)dx \right]\]
\[ = \left.2\left[ x \frac{sin\pi x}{\pi}\right|_0^\frac{1}{2} -\left. \frac{1}{\pi} \int_0^\frac{1}{2} sin\pi xdx \right] - 2\left[ x \frac{sin\pi x}{\pi}\right|_\frac{1}{2}^1 - \frac{1}{\pi} \int_\frac{1}{2}^1 sin\pi xdx \right]\]
\[ = 2\left( \frac{1}{2\pi}\sin\frac{\pi}{2} - 0 \right) - \left.\frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_0^\frac{1}{2} - \left.2\left( \frac{1}{\pi}sin\pi - \frac{1}{2\pi}\sin\frac{\pi}{2} \right) + \frac{2}{\pi} \times \left( - \frac{cos\pi x}{\pi} \right)\right|_\frac{1}{2}^1 \]
\[ = \frac{1}{\pi} + \frac{2}{\pi^2}\left( \cos\frac{\pi}{2} - \cos0 \right) + \frac{1}{\pi} - \frac{2}{\pi^2}\left( cos\pi - \cos\frac{\pi}{2} \right)\]
\[ = \frac{1}{\pi} - \frac{2}{\pi^2} + \frac{1}{\pi} + \frac{2}{\pi^2}\]
\[ = \frac{2}{\pi}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.5 | Q 35 | पृष्ठ ९५

संबंधित प्रश्न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


Choose the correct alternative:

Γ(1) is


Choose the correct alternative:

If n > 0, then Γ(n) is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×