Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} d x ...............(1)\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^n \left( \frac{\pi}{2} - x \right)}{\sin^n \left( \frac{\pi}{2} - x \right) + \cos^n \left( \frac{\pi}{2} - x \right)} dx ..........................\left[\text{Using }\ \int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx\right]\]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\cos^n x + \sin^n x} dx \]
\[ = \int_0^\frac{\pi}{2} \frac{\cos^n x}{\sin^n x + \cos^n x} dx ...............(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} + \frac{\cos^n x}{\sin^n x + \cos^n x} dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sin^n x + \cos^n x}{\sin^n x + \cos^n x} dx\]
\[ = \int_0^\frac{\pi}{2} dx \]
\[ = \left[ x \right]_0^\frac{\pi}{2} = \frac{\pi}{2}\]
\[Hence\ I = \frac{\pi}{4}\]
\[i . e . , \int_0^\frac{\pi}{2} \frac{\sin^n x}{\sin^n x + \cos^n x} d x = \frac{\pi}{4}\]
\[ \therefore \int_0^\frac{\pi}{2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} d x = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.