Advertisements
Advertisements
प्रश्न
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
उत्तर
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = `"e"^x/(x + 4) + "C"`.
Explanation:
Let I = `int (x + 3)/(x + 4)^2 * "e"^x "d"x`
= `int (x + 4 - 1)/(x + 4)^2 * "e"^x "d"x`
= `int [(x + 4)/(x + 4)^2 - 1/(x + 4)^2]"e"^x "d"x`
= `int [1/(x + 4) - 1/(x + 4)^2]"e"^x "d"x`
Put `1/(x + 4)` = t
⇒ `- 1/(x + 4)^2 "d"x` = dt
Let f(x) = `1/(x + 4)`
∴ f'(x) = `- 1/(x + 4)^2`
Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "C"`
∴ I = `"e"^x * 1/(x + 4) + "C"`.
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.