हिंदी

Ed∫x+3(x+4)2ex dx = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.

रिक्त स्थान भरें

उत्तर

`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = `"e"^x/(x + 4) + "C"`.

Explanation:

Let I = `int (x + 3)/(x + 4)^2 * "e"^x  "d"x`

= `int (x + 4 - 1)/(x + 4)^2 * "e"^x  "d"x`

= `int [(x + 4)/(x + 4)^2 - 1/(x + 4)^2]"e"^x  "d"x`

= `int [1/(x + 4) - 1/(x + 4)^2]"e"^x  "d"x`

Put `1/(x + 4)` = t

⇒ `- 1/(x + 4)^2  "d"x` = dt

Let f(x) = `1/(x + 4)`

∴ f'(x) = `- 1/(x + 4)^2`

Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "C"`

∴ I = `"e"^x * 1/(x + 4) + "C"`.

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 60 | पृष्ठ १६९

संबंधित प्रश्न

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 


Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_a^b e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×