Advertisements
Advertisements
प्रश्न
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
उत्तर
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = `"e"^x/(x + 4) + "C"`.
Explanation:
Let I = `int (x + 3)/(x + 4)^2 * "e"^x "d"x`
= `int (x + 4 - 1)/(x + 4)^2 * "e"^x "d"x`
= `int [(x + 4)/(x + 4)^2 - 1/(x + 4)^2]"e"^x "d"x`
= `int [1/(x + 4) - 1/(x + 4)^2]"e"^x "d"x`
Put `1/(x + 4)` = t
⇒ `- 1/(x + 4)^2 "d"x` = dt
Let f(x) = `1/(x + 4)`
∴ f'(x) = `- 1/(x + 4)^2`
Using `int "e"^x ["f"(x) + "f'"(x)]"d"x = "e"^x "f"(x) + "C"`
∴ I = `"e"^x * 1/(x + 4) + "C"`.
APPEARS IN
संबंधित प्रश्न
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
Solve each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.