Advertisements
Advertisements
प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
उत्तर
\[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \tan^{- 1} \left.\frac{x}{2}\right|_0^a = \frac{\pi}{8} ................\left[ \int\frac{1}{a^2 + x^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]
\[ \Rightarrow \frac{1}{2}\left( \tan^{- 1} \frac{a}{2} - \tan^{- 1} 0 \right) = \frac{\pi}{8}\]
\[ \Rightarrow \tan^{- 1} \frac{a}{2} - 0 = \frac{\pi}{4}\]
\[\Rightarrow \tan^{- 1} \frac{a}{2} = \frac{\pi}{4}\]
\[ \Rightarrow \frac{a}{2} = \tan\frac{\pi}{4} = 1\]
\[ \Rightarrow a = 2\]
Thus, the value of a is 2.
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
The value of `int_2^3 x/(x^2 + 1)`dx is ______.