Advertisements
Advertisements
प्रश्न
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
उत्तर
\[\int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^9 x d x\]
\[\text{Let }f(x) = \sin^9 x\]
\[\text{Consider, }f(-x) = \sin^9 \left( - x \right) = - \sin^9 x = - f\left( x \right)\]
Thus f(x) is an odd function
Therefore,
\[ \int_\frac{- \pi}{2}^\frac{\pi}{2} \sin^9 x d x = 0\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
Evaluate the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
\[\int\limits_0^1 \cos^{- 1} x dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x