Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let I} = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]
Consider
\[f\left( - \theta \right) = \log\left( \frac{a - \sin\left( - \theta \right)}{a + \sin\left( - \theta \right)} \right)\]
\[ = \log\left( \frac{a + \sin\theta}{a - \sin\theta} \right) ............\left[ \sin\left( - x \right) = - \sin x \right]\]
\[ = \log \left( \frac{a - \sin\theta}{a + \sin\theta} \right)^{- 1} \]
\[ = - \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) ..............\left[ \log a^b = b\log a \right]\]
\[ = - f\left( \theta \right)\]
\[\therefore f\left( - \theta \right) = - f\left( \theta \right)\]
\[ \Rightarrow I = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta = 0 .................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
Evaluate each of the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`