Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}\],
\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]
\[I = \int_1^4 f\left( x \right) d x\]
\[ \Rightarrow I = \int_1^2 f\left( x \right) d x + \int_2^4 f\left( x \right) d x ..............\left[ \text{Additive property} \right]\]
\[ \Rightarrow I = \int_1^2 \left( 4x + 3 \right) dx + \int_2^4 \left( 3x + 5 \right) dx\]
\[ \Rightarrow I = \left[ 2 x^2 + 3x \right]_1^2 + \left[ \frac{3 x^2}{2} + 5x \right]_2^4 \]
\[ \Rightarrow I = 8 + 6 - 2 - 3 + 24 + 20 - 6 - 10\]
\[ \Rightarrow I = 37\]
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^"e" ("d"x)/(x(1 + logx)^3`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.