Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \sqrt{1 + \cos x}\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \sqrt{1 + \cos x} \times \frac{\sqrt{1 - \cos x}}{\sqrt{1 - \cos x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sqrt{1 - \cos^2 x}}{\sqrt{1 - \cos x}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sin x}{\sqrt{1 - \cos x}} dx\]
\[Let 1 - \cos x = u\]
\[ \Rightarrow \sin x\ dx\ = du\]
\[ \therefore I = \int\frac{du}{\sqrt{u}}\]
\[ \Rightarrow I = \left[ 2\sqrt{u} \right]\]
\[ \Rightarrow I = \left[ 2\sqrt{1 - \cos x} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 2 - 0\]
\[ \Rightarrow I = 2\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Solve each of the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Choose the correct alternative:
If n > 0, then Γ(n) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.