Advertisements
Advertisements
प्रश्न
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
उत्तर
\[\int_0^\frac{\pi}{2} \frac{1}{4\cos x + 2\sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{4 - 4 \tan^2 \frac{x}{2} + 4\tan\frac{x}{2}} d x\]
\[\text{Let }\tan\frac{x}{2} = t,\text{ then }\frac{1}{2}se c^2 \frac{x}{2} dx = dt\]
\[\text{When }x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[ = \frac{- 1}{4} \int_0^1 \frac{dt}{\left( t - \frac{1}{2} \right)^2 - \frac{5}{4}}\]
\[ = \frac{- 1}{4} \times \frac{- 4}{\sqrt{5}} \left[ \log\frac{2t - 1 - \sqrt{5}}{2t - 1 + \sqrt{5}} \right]_0^1 \]
\[ = \frac{1}{\sqrt{5}}\log\frac{\sqrt{5} + 1}{\sqrt{5} - 1}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
Evaluate the following integral:
Evaluate the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`Γ (9/2)`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`