मराठी

4 ∫ 1 X 2 + X √ 2 X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

उत्तर

\[Let\ I = \int_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} d x . \]
\[Let\ 2x + 1 = u\]
\[ \Rightarrow x = \frac{u - 1}{2}\]
\[ \Rightarrow dx = \frac{du}{2}\]
\[ \therefore I = \int\frac{\left( \frac{u - 1}{2} \right)^2 + \frac{u - 1}{2}}{\sqrt{u}} \frac{du}{2}\]
\[ \Rightarrow I = \frac{1}{8}\int\frac{u^2 + 1 - 2u + 2u - 2}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\frac{\left( u^2 - 1 \right)}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\left( u^\frac{3}{2} - u^{- \frac{1}{2}} \right) du\]
\[ = \frac{1}{8}\left[ \frac{2 u^\frac{5}{2}}{5} - \frac{2 u^\frac{1}{2}}{1} \right]\]
\[ = \frac{1}{8} \left[ \frac{2 \left( 2x + 1 \right)^\frac{5}{2}}{5} - \frac{2 \left( 2x + 1 \right)^\frac{1}{2}}{1} \right]_1^4 \]
\[ = \frac{1}{8}\left[ \frac{2}{5} \times 243 - 6 - \frac{2}{5} \times 9\sqrt{3} + 2\sqrt{3} \right]\]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{456}{5} - \frac{8\sqrt{3}}{5} \right]\]
\[ \Rightarrow I = \frac{57 - \sqrt{3}}{5}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 45 | पृष्ठ १७

संबंधित प्रश्‍न

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

\[\int\limits_0^2 \left[ x \right] dx .\]

\[\int\limits_0^2 x\left[ x \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Evaluate the following:

Γ(4)


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×