Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} d x . \]
\[Let\ 2x + 1 = u\]
\[ \Rightarrow x = \frac{u - 1}{2}\]
\[ \Rightarrow dx = \frac{du}{2}\]
\[ \therefore I = \int\frac{\left( \frac{u - 1}{2} \right)^2 + \frac{u - 1}{2}}{\sqrt{u}} \frac{du}{2}\]
\[ \Rightarrow I = \frac{1}{8}\int\frac{u^2 + 1 - 2u + 2u - 2}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\frac{\left( u^2 - 1 \right)}{\sqrt{u}} du\]
\[ = \frac{1}{8}\int\left( u^\frac{3}{2} - u^{- \frac{1}{2}} \right) du\]
\[ = \frac{1}{8}\left[ \frac{2 u^\frac{5}{2}}{5} - \frac{2 u^\frac{1}{2}}{1} \right]\]
\[ = \frac{1}{8} \left[ \frac{2 \left( 2x + 1 \right)^\frac{5}{2}}{5} - \frac{2 \left( 2x + 1 \right)^\frac{1}{2}}{1} \right]_1^4 \]
\[ = \frac{1}{8}\left[ \frac{2}{5} \times 243 - 6 - \frac{2}{5} \times 9\sqrt{3} + 2\sqrt{3} \right]\]
\[ \Rightarrow I = \frac{1}{8}\left[ \frac{456}{5} - \frac{8\sqrt{3}}{5} \right]\]
\[ \Rightarrow I = \frac{57 - \sqrt{3}}{5}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
Γ(4)
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.