Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int\limits_0^2 x\left[ x \right] dx\]
\[\text{We know that}, \]
\[x\left[ x \right] = \begin{cases}x \times 0&,& 0 < x < 1\\x \times 1&,& 1 < x < 2\end{cases}\]
\[i . e . , \]
\[x\left[ x \right] = \begin{cases}0&,& 0 < x < 1\\x&,& 1 < x < 2\end{cases}\]
\[ \therefore I = \int\limits_0^2 x\left[ x \right] dx\]
\[ = \int\limits_0^1 x\left[ x \right] dx + \int\limits_1^2 x\left[ x \right] dx\]
\[ = \int\limits_0^1 \left( 0 \right) dx + \int\limits_1^2 \left( x \right) dx\]
\[ = 0 + \left[ \frac{x^2}{2} \right]_1^2 \]
\[ = \frac{2^2}{2} - \frac{1^2}{2}\]
\[ = \frac{4}{2} - \frac{1}{2}\]
\[ = \frac{3}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals:
If f is an integrable function, show that
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
Γ(n) is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`