Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int_0^\pi \log\left( 1 - \cos x \right) d x\]
\[ = \int_0^\pi \log\left( 2 \sin^2 \frac{x}{2} \right) dx\]
\[ = \int_0^\pi \log2 dx + 2 \int_0^\pi \log \sin\frac{x}{2} dx\]
\[ Let, t = \frac{x}{2} \text{in the secong integral . then } dt = \frac{1}{2}dx\]
\[\text{When }x \to 0 ; t \to 0\text{ and } x \to \pi ; t \to \frac{\pi}{2}\]
\[I = \log2 \left[ x \right]_0^\pi + 4 \int_0^\frac{\pi}{2} \log \sin t dt\]
\[ = \pi\ log2 + 4 \times \left( - \frac{\pi}{2}\log2 \right) ...............\left[\text{Where, }\int_0^\frac{\pi}{2} \log \sin t dt = - \frac{\pi}{2}\log2 \right]\]
\[ = - \pi \log2\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Prove that:
Evaluate each of the following integral:
Solve each of the following integral:
Evaluate :
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`