मराठी

Π / 4 ∫ − π / 4 1 1 + Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

उत्तर

\[Let\ I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} d x . Then, \]
\[I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1}{1 + \sin x} \times \frac{1 - \sin x}{1 - \sin x} d x\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{1 - \sin^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{1 - \sin x}{\cos^2 x} dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx\]
\[ \Rightarrow I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \left( \sec^2 x - \sec x \tan x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \sec x \right]_{- \frac{\pi}{4}}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - \sqrt{2} \right) - \left( - 1 - \sqrt{2} \right)\]
\[ \Rightarrow I = 2\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 16 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_1^e \log x\ dx =\]

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^{\pi/4} e^x \sin x dx\]


Evaluate the following:

Γ(4)


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×