Advertisements
Advertisements
प्रश्न
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
पर्याय
π/4
π/8
π/2
0
उत्तर
π/4
\[\int_0^\pi \frac{1}{5 + 3 \cos x} d x\]
\[ = \int_0^\pi \frac{1}{5 + 3 \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} + 3 - 3 \tan^2 \frac{x}{2}}dx\]
\[ = \int_0^\pi \frac{se c^2 \frac{x}{2}}{8 + 2 \tan^2 \frac{x}{2}}dx\]
\[Let\ \tan\frac{x}{2} = t, \text{then }\sec^2 \frac{x}{2} dx = 2dt\]
\[When\ x = 0, t = 0, x = \pi, t = \infty \]
\[\text{Therefore the integral becomes}\]
\[\frac{1}{2} \int_0^\infty \frac{dt}{4 + t^2}\]
\[ = \frac{1}{2} \left[ \tan^{- 1} \frac{t}{2} \right]_0^\infty \]
\[ = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Evaluate :
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`