मराठी

The Value of π ∫ 0 1 5 + 3 Cos X D X Is(A) π/4 (B) π/8 (C) π/2 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 

पर्याय

  • π/4

  • π/8

  • π/2

  • 0

MCQ

उत्तर

π/4 

\[\int_0^\pi \frac{1}{5 + 3 \cos x} d x\]

\[ = \int_0^\pi \frac{1}{5 + 3 \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]

\[ = \int_0^\pi \frac{1 + \tan^2 \frac{x}{2}}{5 + 5 \tan^2 \frac{x}{2} + 3 - 3 \tan^2 \frac{x}{2}}dx\]

\[ = \int_0^\pi \frac{se c^2 \frac{x}{2}}{8 + 2 \tan^2 \frac{x}{2}}dx\]

\[Let\ \tan\frac{x}{2} = t, \text{then }\sec^2 \frac{x}{2} dx = 2dt\]

\[When\ x = 0, t = 0, x = \pi, t = \infty \]

\[\text{Therefore the integral becomes}\]

\[\frac{1}{2} \int_0^\infty \frac{dt}{4 + t^2}\]

\[ = \frac{1}{2} \left[ \tan^{- 1} \frac{t}{2} \right]_0^\infty \]

\[ = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right) = \frac{\pi}{4}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - MCQ [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
MCQ | Q 36 | पृष्ठ १२०

संबंधित प्रश्‍न

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


Find : `∫_a^b logx/x` dx


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×