Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan x + \cot x \right)^2 d x . Then, \]
\[I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \tan x \cot x \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x - 1 + {cosec}^2 x - 1 + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x + {cosec}^2 x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \cot x \right]_\frac{\pi}{3}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - 1 \right) - \left( \sqrt{3} - \frac{1}{\sqrt{3}} \right)\]
\[ \Rightarrow I = \frac{- 2}{\sqrt{3}}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.