मराठी

Π / 4 ∫ π / 3 ( Tan X + Cot X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

उत्तर

\[Let\ I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan x + \cot x \right)^2 d x . Then, \]
\[I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \tan x \cot x \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \tan^2 x + \cot^2 x + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x - 1 + {cosec}^2 x - 1 + 2 \right) dx\]
\[ \Rightarrow I = \int_\frac{\pi}{3}^\frac{\pi}{4} \left( \sec^2 x + {cosec}^2 x \right) dx\]
\[ \Rightarrow I = \left[ \tan x - \cot x \right]_\frac{\pi}{3}^\frac{\pi}{4} \]
\[ \Rightarrow I = \left( 1 - 1 \right) - \left( \sqrt{3} - \frac{1}{\sqrt{3}} \right)\]
\[ \Rightarrow I = \frac{- 2}{\sqrt{3}}\]

shaalaa.com
Definite Integrals
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.1 | Q 21 | पृष्ठ १६

संबंधित प्रश्‍न

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_1^2 x^2 dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

`int_0^(2a)f(x)dx`


\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_2^3 e^{- x} dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×